Synthetic Aperture Radar (SAR) image segmentation by fuzzy c- means clustering technique with thresholding for iceberg images

نویسندگان

  • Usman Seljuq
  • Rashid Hussain
چکیده

Fuzzy c-means (FCM) clustering algorithm is widely used for image segmentation. The purpose of clustering is to identify natural groupings of data from a large data set, which results in concise representation of system’s behavior. It can be used to detect icebergs regardless of ambient conditions like rain, darkness and fog. As a result SAR images can be used for iceberg surveillance. In this paper we have investigate FCM with thresholding for iceberg image segmentation for Synthetic Aperture Radar (SAR) images. The results showed that the assessment parameters; mean and entropy have lower values for efficient segmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation of Sar Images Using Fuzzy C Means with Non Local Spatial Information

The Segmentation of the Images refers to extracting the needed region from the image based on some specified methodologies. Thresholding Approach, Model-based Approach, Level Set Approach are some of the segmentation methodologies. The clustering methodologies can provide accurate results for most of the cases. As the number of clusters separated from the image increases, the segmentation accur...

متن کامل

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies

Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...

متن کامل

Sar Image Classification Using Fuzzy C-means

Image Classification is the evolution of separating or grouping an image into different parts. The good act of recognition algorithms based on the quality of classified image. The good feat of recognition algorithms based on the quality of classified image. An important problem in SAR image application is accurate classification. Image segmentation is the mainly practical loom among virtually a...

متن کامل

Synthetic Aperture Radar Image Change Detection Using Fuzzy C-Means Clustering Algorithm

This paper presents a novel approach to change detection in synthetic aperture radar (SAR) images based on image fusion and fuzzy clustering. The proposed approach use mean-ratio image and log-ratio image to generate a difference image by image fusion technique. In order to enhance the information of changed regions and background information in the difference image is based on the wavelet fusi...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014